- BELLANCA, A. & SGARLATA, F. (1950). *Ric. Sci.* 20, 1648; taken from *Structure Reports* (1950). 13, 342.
- BRUNTON, G. (1969). Acta Cryst. B25, 2161.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- CARON, A. & DONOHUE, J. (1964). Acta Cryst. 17, 544.
- CARON, A. P., HUETTNER, D. J., RAGLE, J. L., SHERK, L. & STENGLE, T. R. (1967). J. Chem. Phys. 47, 2577.
- CARON, A. P., RAGLE, J. L., YORK, M. E. & YEH, H. (1968). J. Phys. Chem. 72, 556.
- COULTER, C. L., GANTZEL, P. K. & TRUEBLOOD, K. N. (1962). I.U.Cr. World List of Crystallographic Computer Programs, No. 232, p. 35.
- CRUICKSHANK, D. W. J. (1961). Acta Cryst. 14, 896.
- FINBAK, C. & HASSEL, O. (1936). Z. physik. Chem. B32, 433.
- HOARD, J. L. & BLAIR, V. (1935). J. Amer. Chem. Soc. 57, 1985.
- HUETTNER, D. J., RAGLE, J. L., SHERK, L., STENGLE, T. R. & YEH, H. J. C. (1968). J. Chem. Phys. 48, 1739.
- International Tables for X-ray Crystallography (1962). Vol. II, p. 202–203. Birmingham: Kynoch Press.
- KRONBERG, M. & HARKER, D. (1942). J. Chem. Phys. 10, 309.

- KUHLMANN, K. & GRANT, D. M. (1964). J. Phys. Chem. 68, 3208.
- McDonald, T. R. R. (1960). Acta Cryst. 13, 113.
- PALENIK, G. (1962). I.U.Cr. World List of Crystallographic Computer Programs. No. 308, p. 34.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PENDRED, D. & RICHARDS, R. E. (1955). Trans. Faraday. Soc. 51, 468.
- PLUMB, R. C. & HORNIG, D. F. (1955). J. Chem. Phys. 23, 947.
- RAE, A. D. (1965). Acta Cryst. 19, 683.
- RAE, A. D. (1966). Acta Cryst. 20, 586.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- STEPHENSON, C. C., OREHOTSKY, R. S. & SMITH, D. (1968). Private communication.
- SWANSON, H. E., MORRIS, M. C., EVANS, E. H. & ULMER, L. (1964). Nat. Bur. Stands. Monograph No. 25
- TRUEBLOOD, K. N. (1969). In Molecular Dynamics and Structure of Solids. p. 355. Edited by R. S. CARTER & J. J. RUSH. National Bureau of Standards Special Publication 301. Washington, D.C.
- VENKATESAN, K. (1957). Proc. Indian Acad. 46A, 134.
- WEISS, A. & ZOHNER, K. (1967). Phys. Stat. sol. 21, 257.

Acta Cryst. (1971). B27, 1107

The Crystal Structure of Sodium 5,5-Diethylbarbiturate (Sodium Barbital)

BY B. BERKING AND B. M. CRAVEN

Department of Crystallography, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S.A.

(Received 24 June 1970)

The crystal structure of sodium 5,5-diethylbarbiturate NaC₈N₂O₃H₁₁ (sodium barbital) has been determined from X-ray diffraction data measured on an automatic diffractometer. R = 0.025. The crystal data are: $P2_12_12_1$, a = 6.724 (1), b = 11.950 (2), c = 12.129 (2) Å, Z = 4, $D_m = 1.408$ g.cm⁻³. The conformation of the barbital ion is similar to that of the barbital molecule. Deprotonization of the pyrimidine ring at N(3) decreases the internal bond angle at N(3) by 7° and increases those at the neighbouring atoms C(2) and C(4) by 5°. The greater part of the formal negative charge seems to be equally distributed between the two oxygen atoms O(2) and O(4). The molecules are hydrogen bonded (NH···O=2.84 Å) to form ribbons along the *a* axis. The sodium atom is tetrahedrally coordinated by barbital oxygen atoms, with tetrahedra sharing corners to form columns parallel to **a**.

Introduction

We report the crystal structure determination of sodium 5,5-diethylbarbiturate (sodium barbital, Fig. 1) as part of a program for studying and comparing the tautomeric form, stereochemistry and intermolecular interactions of simple barbituric acids and their salts. A series of crystal structures have been determined, including barbituric acid (Bolton, 1963), its dihydrate (Jeffrey, Ghose & Warwicker, 1960) and ammonium salt (Craven, 1963); 5-ethylbarbituric acid (Gatehouse & Craven, 1971) and the $\frac{5}{3}$ hydrate of its potassium salt (Gartland, Craven & Gatehouse, 1971); and 5,5diethylbarbituric acid or barbital (Craven, Vizzini & Rodrigues, 1969) and its sodium salt presently reported). Barbituric acid and 5-ethylbarbituric acid have at least one hydrogen atom at C(5), whereas barbital has none. It is of interest to note that the crystal structures of salts of barbituric acid and 5-ethylbarbituric acid show the formation of carbanions, *i.e.* proton loss is from C(5), whereas in the case of barbital, proton loss is necessarily from an imine nitrogen atom. Barbital is a weaker acid than barbituric acid, as shown by the acid dissociation constants ($pK_a = 7.86$, 3.90 respectively; Doornbos & de Zeeuw, 1969). The pK_a value for 5-ethylbarbituric acid has not been reported.

The crystal structure determination of potassium barbital, based on photographic X-ray intensity data, was reported by Berthou, Rérat & Rérat (1965). The sodium salt was described as isomorphous (Berthou, Cavelier, Marek, Rérat & Rérat, 1962). In order to obtain more accurate geometry for the barbital ion and to permit a better comparison with that of the parent acid, we have determined the crystal structure of the sodium salt using diffractometer intensity data.

Experimental

Transparent, single crystals of sodium barbital were obtained from aqueous solution by slow evaporation at room temperature. The crystals were stable in the X-ray beam. The crystal data are:

a = 6.724 (1) Å b = 11.950 (2) c = 12.129 (2) M.W. 206.18 Space group $P2_12_12_1$ $D_m = 1.408$ g.cm⁻³ $D_x = 1.404$ g.cm⁻³ Crystal habit, prisms along {100} Absorption coefficient, 13.1 cm⁻¹ (for Cu Ka) The lattice parameters and X-ray intensities were obtained on an automatic diffractometer using Nifiltered Cu K α radiation. A crystal with dimensions $0.5 \times 0.2 \times 0.15$ mm³ was mounted with **a** along the diffractometer φ axis. Intensities for 987 reflections were measured by scanning in the θ -2 θ mode up to 2θ =130°. Of these, 65 reflections were considered to be unobserved, because their net intensities did not exceed twice the estimated standard deviation from counting statistics. Absorption corrections were not applied.

Structure determination and refinement

Berthou *et al.* (1962) reported that the crystal structures of sodium and potassium barbital are isomorphous and listed approximate atomic coordinates for the sodium salt which they had refined to give R values of 0.27 and 0.25 for the *hk*0 and *h0l* zones respectively.*

* Note that the x, y, z directions defined by Berthou *et al.* correspond to our y, z, x. The atom nomenclature in this paper conforms to that of Craven *et al.* (1969) rather than Berthou *et al.* (1962, 1965).

Table 1. |F_o| and |F_c| multiplied by 10. The reflections 011, 002, 021, 022, 111, 032, 033 and 211 are omitted

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 3 & 9 & 1 \\ 10 & 2 & 53 & 2710 \\ 2 & 253 & 2710 \\ 2 & 253 & 2710 \\ 2 & 253 & 2710 \\ 3 & 4 & 4 & 5 \\ 5 & 11 & 3 & 11 \\ 5 & 11 & 5 & 11 \\ 5 & 11 & 5 & 11 \\ 5 & 11 & 5 & 11 \\ 5 & 5 & 11 \\ 5 & 5 & 11 \\ 5 & 5 & 11 \\ 5 & 5 & 11 \\ 5 & 5 & 11 \\ 5 & 5 & 11 \\ 5 & 5 & 11 \\ 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 11 \\ 5 & 11 & 5 & 5 & 5 & 11 \\ 5 & 5 & 5 & 11 \\ 5 & 11 & 11 & 11 \\ 5 & 5 & 11 \\ 5 & 11 & 11 \\ 5 & 5 & 11 \\ 5 & 11 & 11 & 11 \\ 5 & 11 & 11 \\ 5 & 11 & 11 \\ 5 & 11 & 11 & 11 \\ 5 & 11 & 11 & 11 \\ 5 & 11 \\ 5 & 11 & 11 \\ 5 & 11 \\$	$\begin{array}{c} \mathbf{H}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} & \mathbf{x}_{\mathbf{x}} & \mathbf{y}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{y}_{\mathbf{x}} & \mathbf{y}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} & \mathbf{y}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{\mathbf{x}} & \mathbf{I}_{\mathbf{x}} \\ \mathbf{I}_{x$	$ \begin{array}{c} 14 & 61 & 59 \\ +11 & 1 & 171 & 166 \\ +11 & 1 & 171 & 166 \\ +11 & 1 & 171 & 166 \\ +11 & 171 & 166 \\ +11 & 171 & 166 \\ +11 & 171 & 166 \\ +11 & 171 & 166 \\ +11 & 171 & 166 \\ +11 & 171 & 166 \\ +11 & 171 & 171 \\ +11 & 171 & $	$ \begin{array}{c} \mathbf{H}_{\rm c} & 0 & \mathbf{K}_{\rm c} & 7 \\ \mathbf{I} & 281 & 1513 & 1513 \\ \mathbf{I} & 1513 & 1513 & 1513 \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\$	$ \begin{array}{c} H^{H} = 0 & K^{H} & & H$
7911556 8 15126 8 15126 14 15 15 15 15 15 15 15 15 15 15 15 15 15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

		β_{23}	0.00004 (3)	-0.0021 (1)		-0.0008 (1)	-0-0020 (1)	- 0-0009 (1)	-0.0003 (1)	-0.0014(1)	-0.0010(1)	-0.0015(1)	-0.0042 (1)	-0.0024 (1)			-0.0003 (1)				-0.0004 (1)			0.0018 (1)			
		β_{13}	0.00176 (6)	-0-0002 (1)		0-0001 (1)	0.0012 (1)	-0.0002 (1)	-0.0003 (1)	-0.0004 (1)	0.0005 (1)	-0.0008 (2)	-0.0017 (1)	-0.0001 (2)			0-0008 (3)				0-0009 (2)			0.0003 (3)			
•	rameter values.	β_{12}	0-00070 (6)	0.0000 (1)		-0.0002 (2)	0.0003(1)	-0.0008(1)	-0.0002 (2)	-0.0007(1)	0.0004 (2)	0-0010 (2)	-0.0004 (2)	0-0022 (2)			0-0020 (3)				0-0002 (2)			0-0012 (3)			
	figures in the pa	β_{33}	0-00361 (3)	0.0045 (1)		0-0032 (1)	0.0041 (1)	0.0034 (1)	0-0034 (1)	0.0054 (1)	0.0033 (1)	0.0040 (1)	0.0057 (1)	0.0054 (1)			0-0086 (2)				0.0036 (1)			0.0059 (1)			
•	e least significant	β22	0-00473 (4)	0.0061 (1)		0.0037 (1)	0.0052 (1)	0.0047 (1)	0.0041 (1)	0-0076 (1)	0.0052 (1)	0.0050 (1)	0.0085 (1)	0.0065 (1)			0-0055 (1)				0-0077 (1)			0.0082 (2)			
•	theses refer to the	B or β_{11}	0-01317 (13)	0-0075 (3)	4.6(6)	0.0099 (3)	0.0099 (2)	0.0094 (2)	0-0096 (3)	0.0056 (2)	0-0093 (3)	0.0093 (3)	0-0129 (3)	0.0118 (4)	3.1 (4)	3-4 (4)	0.0281 (6)	4-0 (5)	7.3 (8)	6-8 (8)	0-0169 (4)	3.6 (5)	3-5 (5)	0.0290 (6)	5.5 (6)	6.5 (7)	4·1 (5)
	's given in paren	Z	0-49220 (4)	0.2865 (1)	0.290(2)	0.3697(1)	0-4341 (1)	0.3795 (1)	0.3062(1)	0.3200(1)	0.2026(1)	0.2037(1)	0.1328 (1)	0.1936(1)	0.125 (2)	0.180 (2)	0.2908 (2)	0.353 (2)	0.305 (2)	0·280 (2)	0.1011 (1)	0.039 (2)	0.101 (2)	0.0987 (2)	0.089 (2)	0.031 (2)	0.165 (2)
	The e.s.d	Ń	0-17176 (5)	0.0617 (1)	0-055 (2)	0-1264 (1)	0.1748 (1)	0-1359 (1)	0.0843 (1)	0.0869(1)	0.0260(1)	0.0115 (1)	-0.0411(1)	-0.0907 (2)	-0.126 (2)	-0.083(2)	-0.1647 (2)	-0.131 (2)	-0.173 (2)	-0·243 (2)	0-0982 (2)	0-054 (2)	0.104 (2)	0-2129 (2)	0.209 (2)	0.260 (3)	0-257 (2)
		x	0-07429 (10)	0.4317 (2)	0.294(4)	0-5174 (2)	0-4034 (2)	0-7157 (2)	0-8331 (2)	1.0165 (2)	0.7561 (2)	0.5314(2)	0-4439 (2)	0-8517 (3)	0-807 (3)	0.994(3)	0-8076 (4)	0-867 (3)	0-667 (5)	0-852 (4)	0.8117(3)	0.777(3)	0-954 (3)	0.7167 (4)	0-563 (4)	0.748 (4)	0.750 (3)
			Na	(E)Z	H(I)	C(2)	0(2)	N(3)	C(4)	0(4)	C(5)	C(6)	0(6)	C(7)	H(71)	H(72)	C(8)	H(81)	H(82)	H(83)	C(6))	H(91)	H(92)	C(10)	H(101	H(102)	H(103)

Table 2. Atomic parameters with estimated standard deviations

Positional parameters are given as fractions of the lattice translations. Thermal parameters are given according to the expression: $T = \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{13}hl + 2\beta_{23}kl)].$

We have independently confirmed these results by solving the phase problem using direct methods. The origin and enantiomorph determining phases were assigned as follows:

No.*	h	k	1	E	α
2	0	9	5	2.75	$\pi/2$
3	1	0	13	2.72	$\pi/2$
7	5	0	6	2.51	Ó
12	0	4	3	2.30	0

In addition, five phases could be estimated by symbolic addition:

2 0	7	2.88	$-\pi/2$
19	7	2.27	$\simeq 0$
0 3	3	2.27	$\pi/2$
0 13	3	2.13	$-\pi/2$
0 2	2	1.97	π
	2 0 1 9 0 3 0 13 0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 7 2.88 1 9 7 2.27 0 3 3 2.27 0 13 3 2.13 0 2 2 1.97

After a tangent refinement, an E map based on 153 phased reflections with |E| > 1.4 showed all 14 heavy atoms. The R value at this stage was 0.185.

The refinement of the atomic parameters was done by the least-squares block-diagonal program for IBM 1130 computer (Shiono, 1968). The X-ray atomic scattering factors were taken from *International Tables* for X-ray Crystallography (1962) for the heavy atoms, and from Stewart, Davidson & Simpson (1965) for the hydrogen atoms. The sodium ion was treated as an atom with Z=11. The function minimized in the refinement was $\Sigma\omega\Delta F^2$, using the weighting scheme $\sigma^2(F)=$ $1\cdot3+0\cdot01F^2$. All mentioned R values are defined as $R=\Sigma|\Delta F_{meas}|/\Sigma|F_{meas}|$. The refinement reduced R to

* This number is from the listing of reflections in decreasing order of |E|.

0.106 and 0.065 using individual isotropic and anisotropic thermal parameters respectively. At this stage, the hydrogen atoms were located in a difference electron density map. Refining with anisotropic thermal parameters for the heavy atoms and isotropic ones for the hydrogen atoms gave convergence at R = 0.030(0.032) for the observed (all) reflections. Comparison of observed and calculated structure amplitudes showed systematic differences which might be explained as extinction effects. After excluding all eight reflections with $|F_c| > 60$ and $\sin \theta \le 0.3$, the final R value became 0.024 (0.025) and the R_w value 0.033 (0.037) with $[\Sigma(\Delta F_{\text{meas}}/\sigma_F)^2/(m-n)]^{1/2} = 0.81$. The observed and calculated structure factors are given in Table 1 and the final atomic positional and thermal parameters are shown in Table 2. In Fig. 1, the thermal parameters are represented as 50% probability ellipsoids.

The best least-squares fit of atomic anisotropic thermal parameters U_{ij} to a rigid-body motion (Schomaker & Trueblood, 1968) gave the parameters which are listed in Table 3. The rigid-body model is only partially satisfactory, since about one half of the calculated rigid body U_{ij} values differ from the corresponding input U_{ij} values by more than three times the estimated standard deviations in the input U_{ij} . The poorest least-squares fit is for the terminal methyl carbon atoms. The greatest difference in an individual parameter is for U_{33} of carbon C(10) (0.0092 Å² with σ of 0.0009 Å²).

The bond length corrections assuming rigid body motion are about 0.005 Å in the pyrimidine ring and 0.007 Å in the ethyl groups (Table 4). The corrections for the ring bond lengths are in the expected range, but the corrected C(7)-C(8) and C(9)-C(10) bond lengths (1.511, 1.518 Å) are still somewhat short of the expected value (1.526 Å; Lide, 1962), but these bonds in-

Table 3. Rigid body vibrational tensors

The tensors L for libration, T for translation, and S for screw motion, are referred to the right-handed orthogonal molecular axes in the direction of

(1) the bond C(5)-C(2)

- (2) the normal to the pyrimidine ring of the side of atom C(9)
- (3) the cross product of (1) and (2).

The origin, defined by symmetrizing S, has the coordinates 0.822 Å, -0.191 Å, 0.080 Å referred to the cetner of mass and in the L-system. Criteria for the rigid body fit: $[\Sigma \{U_{ij}(\text{meas}) - U_{ij}(\text{calc})\}^2/(n-s)]^{1/2} = 0.0029 \text{ Å}^2$

e	e.s.d. of $U_{ij} = 0$	0∙0034 Ų		
		(1)	(2)	(3)
L and direction cosines	4·75°	-0.441	-0.498	0.747
	3.51	-0.896	-0·199	-0.397
	2.16	-0.049	-0.844	0.534
T and direction cosines	0∙170 Å	-0.029	0.835	-0.550
	0.120	-0.506	0.462	0.728
	0.133	0.862	0.300	0.409
S and direction cosines	0.001	-0.001	-0.156	-0.988
	0.000	0.969	0.245	-0.040
	- 0 ·001	0.348	-0.957	0.151

volve the atoms for which departures from rigid body mition are greatest.

Table 4 (cont.)

х ν z ł -xv $\frac{1}{2} + z$ е Table 4. Intra- and intermolecular distances and angles f $\overline{2}-x$ + v-z1-x-zg +yThe bond lengths between heavy atoms within the barbital ion ĥ +z3 -x·ν are listed as i $\overline{2}-x$ +y— z (1) uncorrected distances k ş -x+z-- ν (2) distances with corrections based on the rigid body mode of 1 -x-y $\frac{1}{2} + z$ molecular thermal motion. $\frac{1}{3} + x$ m -v1-zEstimated standard deviations are as follows: C-N, C-O, C-C bonds within the ring, and Na-O (i) Bond lengths (1)(2) 0·002 Å distances N(1)-C(2)1.396 Å 1.401 Å C-C bonds in the aliphatic chain 0·003–4 Å C(2) - N(3)1.343 1.349 0.04 Å N-H, C-H bonds N(3) - C(4)1.339 1.343 C-N-O angles and angles between heavy atoms at 1.533 C(4) - C(5)1.527 0·3° the ring C-C-C angles in the chain C-N-H angles C(5) - C(6)1.520 1.527 0.5° C(6) - N(1)2° 4° 1.348 1.351 Other angles with H atoms C(5)-C(7) 1.538 1.545 C(5) - C(9)1.549 1.557 Symmetry code C(7) - C(8)1.504 1.511 х v z C(9) - C(10)1.512 1.518 1 + xа у z b 1-x+y- *z* C(2) - O(2)1.238 1.241 C(4) - O(4)C(6) - O(6)1.245 1.250 $\frac{1}{2} + z$ с $\frac{3}{2} - x$ ·ν d $\bar{1} + x$ 1.216 1.221 z ν

Fig. 1. The 50% probability ellipsoidal representation of atomic thermal parameters of sodium barbital (Johnson, 1965).

Table 4 (cont.)

(ii) Bond angles			
C(7) - C(5) - C(4)	109·3°	H(82)-C(8)-H(83)	102°
C(9) - C(5) - C(5)	108.1	H(83) - C(8) - C(7)	113
		H(91) - C(9) - C(5)	105
H(1) - N(1) - C(2)	115	H(91) - C(9) - C(10)	113
H(1) - N(1) - C(6)	119	H(91)—C(9)—H(92)	107
H(71)-C(7)-C(5)	109	H(92) - C(9) - C(5)	106
H(71)-C(7)-C(8)	111	H(92)-C(9)-C(10)	111
H(71)-C(7)-H(72)	101	H(101)-C(10)-C(9)	113
H(72)-C(7)-C(5)	110	H(101)-C(10)-H(102)	98
H(72)-C(7)-C(8)	113	H(101)-C(10)-H(103)	110
H(81)-C(8)-C(7)	107	H(102)-C(10)-C(9)	115
H(81)-C(8)-H(82)	108	H(102)-C(10)-H(103)	108
H(81)-C(8)-H(83)	113	H(103)-C(10)-C(9)	112
H(82)-C(8)-C(7)	113		
(iii) Hydrogen bondi	ing distances and angles		
N(1)-O(4)d	2·837 Å	N(1)-H(1)-O(4)d	16 2 °
H(1) - O(4)d	1.938	$N(1) \cdots O(4) d - C(4) d$	160.5
(iv) Sodium coordin	ation tetrahedra		
Na-O(2)	2·322 Å	O(2)—Na– $O(2')m$	124·8°
Na = O(6)l	2.315	O(2) - Na - O(4)a	84.0
Na = O(2')m	2.341	O(2) - Na - O(6)l	106.5
Na-O(4)a	2.354	O(2')m-Na-O(4)a	126.5
		O(2')m-Na-O(6)l	102.8
		O(4)a-Na-O(6)/	110.8
(v) Close intermolec	ular approaches		
Na - N(3)a	2·80 Å	H(71) - O(2)g	2·87 Å
O(2) - O(4)a	3.13	H(72) - H(1)d	2.93
O(4) - H(83) f	2.52	H(81) - H(91)h	2.61
O(6) - H(72)a	3.13	H(82) - H(101)g	2.45
N(1)-H(83)b	3.12	H(83) - O(4)i	2.52
C(2) - H(91)c	3.28	H(91) - H(81)k	2.61
N(3)-H(71)c	2.98	H(92) - H(83)f	2.66
C(4)-Nad	2.97	H(101) - H(82)b	2.45
C(5)-H(1)d	3.78	H(102) - H(81)k	2.76
C(6)–Na <i>e</i>	3.45	H(103) - H(83)f	2.76
H(1)–H(83)b	2.73		

Discussion

(i) The barbital ion

The conformation of the barbital ion (Fig. 1) is similar to that of barbital itself, *i.e.* the ring is nearly planar and the ethyl groups together with C(5) form a hydrocarbon chain which is nearly in the all *trans* configuration, with the chain axis perpendicular (90.2°) to the ring plane. Deviations from the idealized geometry are given in Table 5 as atomic displacements from best least-squares planes and torsion angles about covalent bonds.

Table 5. Best least-squares planes and torsion angles of pyrimidine ring

- Plane 1: Plane through the six pyrimidine ring atoms.
- Plane 2: See plane 1 and the three adjacent O atoms.
- Plane 3: Plane through the atoms of the chain C(5), C(7), C(8), C(9), C(10).

(i)	Equat	ions	of	the	planes:	

Plane 1:	-0.047X	+0.838Y	-0.544Z = -	- 1.375
Plane 2:	-0.007X	+0.826Y	-0.564Z = -	- 1.301
Plane 3:	0·799X	+0.354Y	+0.486Z =	5.352

Table 5 (cont.)

(ii) Distances (Å) of atoms from the planes. The underlined values belong to atoms *not* forming the planes.

	Plane 1	Plane 2	Plane 3
N(1)	-0.032	-0.069	
C(2)	0.041	-0.003	
N(3)	0.009	0.014	
C(4)	-0.061	-0.000	1.285
C(5)	0.062	0.135	0.014
C(6)	-0.050	-0.004	-1.249
C(7)			$-\overline{0.019}$
C(8)			0.002
C(9)			0.021
C(10)			-0.018
O(2)	0.136	0.040	
O(4)	$-\overline{0.183}$	-0.078	
O(6)	$-\overline{0.053}$	-0.034	
H(1)	$-\overline{0.075}$	-0.149	

(iii) Torsion angles within the pyrimidine ring

Torsion angle
6·17°
-1.64
- 7.70
11.98
- 7.24
-0.85

Table 5 (cont.)

(iv) Torsion angles including atoms of the hydrocarbon chain

C(9)-C(5)-C(7)-C(8)	182·2°
C(7)-C(5)-C(9)-C(10)	183.0
N(3)-C(4)-C(5)-C(7)	132.4
N(3)-C(4)-C(5)-C(9)	252.5
N(1)-C(6)-C(5)-C(7)	231.9
N(1)-C(6)-C(5)-C(9)	112.5

In Fig. 2, bond lengths and angles for the barbital ion are compared with those of barbital. As expected, these are very similar for the C–C bonds at C(5) and in the ethyl groups, and are most significantly different in the region near atom N(3) which is the deprotonation site. As a result of deprotonation, the internal ring

Fig. 2. Bond lengths (Å) and bond angles (°) for the barbital ion (upper number) and the barbital molecule (lower number). The latter are average values of three molecules: Barbital I (Craven *et al.*, 1969) and the 2:1 complex of barbital and caffeine (Craven & Gartland, 1970). The e.s.d.'s are between 0.002 and 0.004 Å and 0.3 and 0.6°.

angle at N(3) closes from $126 \cdot 4^{\circ}$ in barbital to $119 \cdot 2^{\circ}$ in its ion. A similar effect has been noted by Singh (1965) in a variety of pyrimidine crystal structures. The opening of each of the internal ring angles at the adjacent carbon atoms C(2) and C(4) by 5° over-compensates for the closing of the angle at N(3) by 7°. This suggests that all three angular changes are a consequence of the deprotonation.

In the barbital ion, the two C-N bonds at the deprotonated nitrogen atom are almost equal and significantly shorter (1.34 Å) than the corresponding bonds in barbital (1.36 and 1.38 Å). Conversely, the flanking carbonyl bonds C(4)-O(4) and C(2)-O(2) are significantly longer (1.24 vs. 1.21 Å). These results and the approximate symmetry about N(3) in the O(4)-C(4)-N(3)-C(2)-O(2) grouping indicate that the greatest part of the formal negative charge on the barbital ion is distributed almost equally between the O(2)and O(4) oxygen atoms. The two C-N(1) bond lengths from the non-deprotonated nitrogen atom N(1) differ significantly (1.40 vs. 1.35 Å).

(ii) Ionic interactions and hydrogen bonding

The sodium ions are tetrahedrally coordinated by four oxygen atoms from four different barbital ions (Fig. 3). The geometry of this tetrahedron is nearly regular, with Na···O distances ranging between 2·32 and 2·35 Å and the O···Na···O angles ranging between 84 and 127° (Table 4). The Na···O distances are close to the sum of the ionic radii (2·4 Å; Pauling, 1960). The tetrahedra share corners at O(2) and form infinite chains in the **a** direction.

There is only one crystallographically distinct hydrogen bond, $N(1)-H\cdots O(4)$, in the sodium barbital crystal structure and this links barbital ions in continuous ribbons parallel to **a**. The atoms $N(1)-H(1)\cdots O(4)-C(4)$ in the hydrogen bond are almost collinear, as shown by the angles in Table 4 (iii). This geometry seems to be typical of barbiturate crystal structures in which two molecules are linked by only one hydrogen bond, *e.g.* γ -methylamobarbital (Gartland & Craven, 1971) and the 2:1 complex of barbital with caffeine (Craven & Gartland, 1970).

The intermolecular interactions involving each barbital oxygen atom are as follows: oxygen O(2) is coordinated to two different sodium ions, oxygen O(4) is coordinated to one sodium ion and is acceptor for a hydrogen bond, and oxygen O(6) is coordinated to one sodium ion. These interactions are qualitatively stronger for O(2) and O(4) than for O(6). They appear to be compatible with the conclusion based on intramolecular bond lengths and angles that the greater part of the formal negative charge on the barbital ion is at O(2) and O(4).

(iii) Comparison of the crystal structures of barbital I and sodium barbital

The similarity between the broad features of these two crystal structures is best seen by comparing the views down the ribbons of molecules (ions) which are linked by N(1)-H \cdots O(4) hydrogen bonds (Fig. 4, and Craven *et al.*, 1969, Fig. 5). The lattice translations

along the ribbon directions are nearly the same (6.72 vs 6.83 Å) as are the N(1)...O(4) hydrogen bond distances (2.84 vs 2.87 Å). In barbital I these ribbons

Fig. 3. The crystal structure of sodium barbital as a projection down the *a* axis. The coordination bonding between the barbital ions and the sodium ion.

Fig. 4. The crystal structure of sodium barbital as a projection along [011]. The hydrogen bonding system.

are further cross-linked by pairs of hydrogen bonds $N(3)-H\cdots O(2)$ to form doubly stranded ribbons. In sodium barbital, the second hydrogen atom is not available for hydrogen bonding, but a similar cross-linking is effected by ionic interactions involving sodium ions. It should be noted however that N(3) is not in the immediate coordination shell about the sodium ion. The closest $Na\cdots N(3)$ distance is 2.80 Å.

The assembly of hydrogen bonded ribbons in barbital I leads to a close association among the ethyl groups which project into 'hydrophobic channels' surrounding the threefold screw axes and threefold inversion axes. Similar channels are found in sodium barbital running parallel to **a** (Fig. 3). There are four $H \cdots H$ distances within 0.2 Å of the sum of the van der Waals radii (2.4 Å, Pauling, 1960) as shown in Table 4(v).

(iv) Comparison between the crystal structures of sodium and potassium barbital

The replacement of sodium by potassium gives nonuniform increases in the cell translations ($\Delta a = 0.11$, $\Delta b = 0.40$ and $\Delta c = 0.84$ Å) which seem to arise from the increase in alkali ionic radii and a slight reorientation of the barbital ion. The average increase in observed metal-oxygen distances is 0.33 Å, which is close to the expected difference in ionic radii (0.37 Å; Pauling, 1960). The NH \cdots O-C hydrogen bond is stretched by 0.14 Å (2.98 vs 2.84 Å) in the potassium salt. Both the hydrogen bonded ribbons and columns of metal-oxygen tetrahedra are parallel to a. The resistance of the hydrogen bonds to further stretch is probably the reason for the smallest lattice expansion being in the a direction. The relative expansion of metal-oxygen tetrahedra and hydrogen bonding along a is associated with a twisting of the barbital ion. The angle between **a** and the molecular axis $N(1) \rightarrow C(4)$ decreases from 7.6° in the sodium salt to 3.7° in the potassium salt. There is a smaller decrease in the dihedral angle between best least-squares planes through the barbital rings in adjacent hydrogen bonded ribbons $(66\cdot1^{\circ} vs 65\cdot5^{\circ})$. The expansion of **b** and **c** lattice translations is attributed to the expansion of metal oxygen tetrahedra and adjustment to accommodate the ethyl groups. The tilting of the barbital ion brings the plane of the alkyl group carbon atoms more nearly parallel to (100) in such a way that lattice expansion would be greater along **b** than c, as is in fact observed.

A comparison of the molecular geometry of the barbital ion in the sodium and potassium salts shows no significant differences in terms of the respective average standard deviations in atomic positions (0.002 and 0.05 Å).

This work was supported by a grant NS-02763 from the U.S. Public Health Service, National Institutes of Health. The IBM 7090 and 1130 computer programs were modified and adopted by Dr R. Shiono, Department of Crystallography, University of Pittsburgh.

References

- BERTHOU, J., CAVELIER, C., MAREK, D., RÉRAT, B. & RÉRAT, C. (1962). C.R. Acad. Sci. Paris, 255, 1632.
- BERTHOU, J., RÉRAT, B. & RÉRAT, C. (1965). Acta Cryst. 18, 768.
- BOLTON, W. (1963). Acta Cryst. 16, 166.
- CRAVEN, B. M. (1963). Acta Cryst. 17, 282.
- CRAVEN, B. M., VIZZINI, E. A. & RODRIGUES, M. M. (1969). Acta Cryst. B25, 1978.
- CRAVEN, B. M. & GARTLAND, G. L. (1970). J. Pharm. Sci. 59, No. 11, 1666.
- DOORNBOS, D. A. & DE ZEEUW, R. A. (1969). *Pharm. Weekblad*, 104, 233.
- GARTLAND, G. L. & CRAVEN, B. M. (1971). To be published.
- GARTLAND, G. L., CRAVEN, B. M. & GATEHOUSE, B. M. (1971). To be published.
- GATEHOUSE, B. M. & CRAVEN, B. M. (1971). Acta Cryst. To be published.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JEFFREY, G. A., GHOSE, S. & WARWICKER, J. O. (1960). Acta Cryst. 14, 881.
- JOHNSON, C. K. (1965). Techn. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- LIDE, D. R. (1962). Tetrahedron, 17, 125.
- PAULING, L. (1960). *The Nature of the Chemical Bond*, 3rd ed. Ithaca: Cornell Univ. Press.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- SHIONO, R. (1968). Unpublished work.
- SINGH, C. (1965). Acta Cryst. 19, 861.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.